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Note

Gaussian Matrix Elements of the
Free-Particle Green’s Function*

1. INTRODUCTION

Recently we proposed a method for calculating electron-molecule scattering cross
sections which requires the evaluation of matrix elements of the free-particle Green’s
function over Cartesian Gaussian basis function [1]. This arises when the scattering
potential, V, is approximated by a sum of separable terms of the form

N

Ve, r) = vt = ﬂz_ Pul®) Vaspd ('), 1)
where
Vie = [ 92® V®) @40) @

and the basis functions ¢,(r) are Cartesian Gaussian functions. If the truncated
potential, Eq. (1), is inserted, the Lippmann-Schwinger equation for the transition
operator

Tt = Ut + UtG,*Tt 3)

becomes a matrix equation with elements

T«:B = U,:g + z UIV(G0+)78 TgB ’ (4)
v,8

where U = 2V and G,* is the free-particle Green’s function. Equation (3) is then
solved by a simple matrix inversion. This procedure requires the evaluation of the
matrix elements of G,+ over the basis functions ¢,(r). For molecular systems a con-
venient choice of functions for the expansion of the potential, Eq. (1), is Cartesian
‘Gaussian basis functions. A large number of such Gaussian functions can be required
to adequately represent a scattering potential, and hence it is important to have an
efficient procedure for the evaluation of the matrix elements (Gyt),s .

In this paper we present a method for generating analytic formulas for Gaussian
matrix elements of the free-particle Green’s function. The method is based on
Ostlund’s technique for evaluating scattering integrals involving Gaussian and plane
wave functions [2], but it derives its simplicity from some recursive properties of the
spherical Bessel functions.

* Supported by a grant from the National Science Foundation.
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In Section 2 we present our technique for deriving formulas for Gaussian matrix
elements of G,*. Our results are tabulated in Section 3 for matrix elements involving
Cartesian Gaussian functions of up to f~type symmetry. The formulas given are valid
for polyatomic systems, but only those combinations of Gaussian functions which
contribute to the Z, IT, and 4 symmetries of a linear molecule are listed.

2. THEORY
The free-particle Green’s function satisfies the equation
(V2 + k®) Gylk; x, r') = 8(r — ). )
The solution for the outgoing wave boundary condition is

Gtk n 1 giklr—r] "

o(,l',l')—'—ﬁm, (62)

and the solution for the standing wave boundary condition is the principal-value

Green’s function

ccostklr—r'l)
lr—r'|

G*(k; T, ) = o (6b)

We are interested in matrix elements of the form {u&;4 | Gyt | uB,..>, where u3A isa

normalized Cartesian Gaussian function with center at A,
I"%r.nAn = Nlmn(x - Aw)l (}’ - Av)m (Z - Az)n e—u|r—A|’, (7)

where Ny, is a normalization factor

- [2I — DN 2m — D 2n — DHUP2 [ 734
N ln}n (2 ol /2)l+m+'n (ﬂ) (8)
and
nll =nn —2)n—4) -1 )
Taking Fourier transforms, we obtain the integral representation
<k , I"l m’'n >
<l"lmn l GO (E) ‘ F‘l m'n > (2 )3 J‘ dsk <F’lmn l k> m s (10)

where E = k¢?/2. The Fourier transform of a Gaussian function may be evaluated by
elementary methods and is given by

)3/4 jiHmin

Wi | K> = ( a ) TT=DNEm =D s = DIE

X Ak, ( 2:;”/2 ) Hy ( 2{::/2) H, ( 2512/2 )’ h
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where H, is the Hermite polynomial of order /. Introducing the Cauchy principal value,
Eq. (10) may be written in the form

Chomn | o™ | iimr>

1 oo | IOK | fimeny k), .
— G [P [ e B R i () it ol | ], (120)

where P denotes the Cauchy principal-value integral and the second term is the residue.
The corresponding matrix element for the principal-value Green’s function is

1

. : CHitmn | KKK | plmn
Wi | G| Wiy = s P [ e S L w2,

ko2 — k2

(12b)

Evaluation of the residue term on the r.h.s. of Eq. (12a) is straightforward. Eval-
uation of the first term, which is just the matrix element of G,?, is the subject of this
paper. Substituting Eq. (11) into Eq. (12b) and using the expansion of the plane wave

GRR = dn Y ity (kR) Yiw(R) Yia(h), (13
LM
where

leads to the expansion

o | G | o> = X i C(lmn, U'm'n') fraghy » o0 B; Imn, I'm'n’) Yip(R),  (15)

LM
where
2\ ]
C(lmn; I'm'n’) = — (-;—) W [ — DN ECm — DI 2r — DRI — DN
X 2m" — D Q2n" — D2 j-Vimemtn—n’ (16)
and

./LM(kO s O B’ lmn, l'm'n')

- [ D (et ) . )

k, k., k k,
X Hy (i) He (251/2) How (2,91'/2) Ha (2/31/2)' an
Evaluation of the coefficients, f;,, , leads to integrals of the form

kve=a¥j (kR)

ILp = Pfo dk k2 — k02 ’ (18)
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where

a = (x + B)/4aB, (19a)
and

p=L+2 (19b)

The evaluation of matrix elements of G,” for all combinations of Cartesian Gaussian
functions of up to f~type symmetry requires the integrals 7;? for0 < L < 6,2 <p < 8.
The straightforward way to obtain all these I, ? is to differentiate the lower-order ones,
i.e., in L and p, successively with respect to 4 and R. However, by using the recursive
properties of the spherical Bessel functions, i.e.,

CL =1} 4Ry = ik + jeilkR) o)

we can establish the relation

R

I =54

25 + 12, @D

With the result, Eq. (21), we need only obtain I,?, p = 4, 6,8 and L% p = 5,7 by
successive differentiations. To see this we start from the relation, pointed out by
Ostlund [2], of 1,2 to the error function of the complex argument

102 — 2_7;{_ e Re [eiqR erf (iail/i + l'(a)l/2 q)]’ q = ko . (22)

The formula for I;? is obtained by differentiating Eq. (22) with respect to R:

7l/2 o—RP/da

to = 5 ot e e 1) vt (0] - e

3. RESULTS

We have used this approach to obtain explicit expressions for the matrix elements
of the Green’s function with Cartesian Gaussian functions of s, p, d, and f-type. For
convenience we list the matrix elements appropriate for axially symmetric molecules,
i.e., 2, IT, and 4 cases. The matrix elements for the 2, /1, and 4 symmetries are shown
in Tables I, II, and III, respectively.

In Table 1V we also give actnal numerical values for matrix elements of the Green’s
function for several choices of Gaussian basis functions. In these calculations we used
a program based on Gautschi’s algorithm for evaluating the complex error function [3].
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TABLE 1

Matrix Elements of the Principal-Value Part of the Free-Particle Green’s Function for Z Cases®?°

54— 5% = a1

A B A
Z>— 8§~ = _aITPIIIS

A A B)‘/’ —r (R Pt + Y
A4 (2 1
zz4 - 5% = o §3 Pulf — o I¢ + 20 ;
A 5 A 2 3 2
ZZ~_Z~=3T/_z%50¢ﬁ1/2P3135-5aﬂ1/2P111 ﬁlliPlIlz
zz4 -~ zZF - = 3 4 PL* + 1 BP,I* — -1-1.,8
35q B TaB 3 Saf
— § Bl + 41
A 2 3
zzz%4 — §¥° - G 2 s Pols® + 55 PR — -TIEPIII}
4 B A 8 4 1
zzZ* - 7% = - J N KIS X — L)
27~ 27= Gsyin g T LT Ty T T sty
4
~ e Dt G
4
4 _ B _ — s 7
zz7% - ZZ o) % 63WWI’.L + 52 amﬁmx
3 4B* 6B* 12
— g Pl — s Pl + g B — o p1113§
zzz* ZZZ~—A; 16 prot 2 __pue
150 231(B)2 " ¥° T 770appr Tt
10 P+ 1, 8 B
21872 T T (eBp 0 35 @ Mt
24 B 6 24 12
—_— — 8 __ 4 — 4
+ 7 (oLB)l/z P2126 5(0‘5)1/2 Io (aﬁ)llz 212 + (aﬁ)llz Io :
% A, B, and B* are defined as
4= (2)1/2 1 B—(1+1) _ +3
=) @ 2Rt ik

where « and B are the exponents of the Cartesian Gaussian function.

® The argument of all Py is R.

o 5%, 7% 2Z* are related to s of Eq. (7) as follows: S = pese, Z¢ = ,L.,.,l,zz~ - y:o;*.
Higher orders follow analogously. ZZZ 4_ 7zzZ%is a shorthand notation for <y003 1 Gy (")] Hooa By
of Eq. (15).
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TABLE 11
Matrix Elements of the Principal-Value Part of the Free-Particle Green’s Function for J7 Cases®¢

5 A 27\ Lo 1 1,
Xf—X'=W%—' (ﬁ') Qsaly +§lez‘+-3-ln2

4 A {1 /8m\18 2m\1/2 4
Zt = 2. ﬁ("S—) Quals —*(‘]?) Qul® — < PS¢

1
LS TR
21" *® 15"3

A 1 8 420m\112 8
XZZﬂ_XZZ!:‘—ﬁ—g—'“'—“(—"L) Qele® + = (ﬂ) Qunl®

@B 3| 3465\ 13 5
B 2i1 (i_:)m Oual® + E Pely® — % P — ;TP,I,B
it =2 () o 5 ()
I 20

2178
— 4af (‘"1'15:) Qualy* + #lez‘ + —-—Iu 2

A 20\ M2 1 1
X2t X = ) 0wt — 3 puts - 5 Pil)
A 1 727\ .
xZz4 — X1 —W3 Qtil + = (15) Qssl?
1 2
P.I. o P — I =2 ( 1’;) 0.1

+ 2P VAES 21‘;

3 243 5 0
4 g A 1 2 /210712 1 (2m\Y/2 .
Xzz Xz -3——(115)1/2 ! 31504( 11 ) Quald” + - (E) Culs

+2 pp lP,,I 3P1§
g3 o0 T asg el — 35 Pl

* See footnote a of Table I for the definitions of 4, B, and B*.
b We define Quar = Yin + Yo n
x“ XZ%, and XZZ* are related to pjm of Bq. (7) as follows: X? = p5A xz#4 = A and
XZZ% = p.m. Also see footnote ¢ of Table 1.
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TABLE III
Matrix Elements of the Principal-Value Part of the Free-Particle Green’s Function for 4 Cases®

y s A { 1/8m\ie 1 2 1
XY.., _ Y= —_—_— 6 — 3 — 6 —_— 8
xrt =2 } (53) " Qute + 5z P + - Pt +151(,}

6\35
y " A (2 2w\ 1 {8\l
xvz? — xvz? - 2 —(———) 18—_(——) g
(B 335 57) Qb e \35) Qubs
2 Pl + — 182
231°°° T 105"

p s A (2w 1 2 1
Xzt = xS B () Qut - Pl — o pd — P

¢ See footnotes a, b, and ¢ of Table II.

TABLE IV
Some Numerical Values for Matrix Elements of the Free-Particle Green’s Function

A. 2 Symmetry cases

Basis functions Matrix element®

1-1 —0.16922(—3) —0.10364(—6)

1-2 —0.35845(—3) —0.42964(—6)

2-3 —0.40672(—2) —0.306211(—4)
44 —0.12444(—1) —0.59651(—8)

4-5 —0.98178(—2) —0.34388(—3)

6-6 —0.88728 —0.46259(—1)

6-3 —0.10915 —0.49350(—2)

3-7 —0.23692 —0.23196(—1)

3-9 0.334011(—2) —0.52021(—6)

3-8 0.182042 —0.19020(—1)

4-8 0.27396(—2) —0.143465(—5)
6-8 —0.16438(1) —0.17828

The exponents, symmetry type, and coordinates of basis functions 1 to 9 are

Basis function Type Exponent Coordinates
1 S 5909.44 (0,0, R)
2 S 887.451 0,0, R)
3 N 19.9981 0,0, R)
4 V4 26.786 0,0, R)
5 V4 0.1654 0,0, R)
6 zz 1.225 ©,0, R)
7 S 0.128 0,0,0)
8 4 0.202 0,0,0
9 z 5.9564 0,0, R)
R = —1.034 a.u, and (q, b, ¢) are the coordinates of the Cartesian Gaussian function.

2 For k, = 0.03756808. The two columns are the real and imaginary parts of the matrix element,
and the numbers in parentheses are the powers of ten by which the numbers are to be multiplied.
Tabie continued
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TABLE WVW—Continued

B. IT Symmetry cases

Basis functions Matrix element?®

1-1 —0.166675(—2) —0.7385(—9)
1-2 —0.73788(—3) —0.96335(—35)
3-3 —0.200066(—1) —0.26408(—9)
2-5 0.49331(—1) 0.14935(—4)
34 —0.106265(--1) —0.497154(—7)
1-6 —0.255868(—6) —0.73535(—9)
4-5 —0.96181(—1) —0.27830(~—5)

The exponents, symmetry type, and coordinates of basis functions 1 to 6 are

Basis function Type Exponent Coordinates
1 X 200. 0,0, R
2 X 0.1 ©,0,R)
3 Xz 10.0 0,0, R)
4 Xz 0.5 0,0, R)
) .94 1.0 0,0,0)
6 X 200. 0,0, —R)
R = —1034au.

® For ko = 0.1. See also footnote a.

4. CONCLUSIONS

We have described an efficient method for generating analytic formulas for Gaussian
matrix elements of the free-particle Green’s function. The method is based on
Ostlund’s technique for evaluating integrals involving Gaussian and plane wave
functions, but it derives its simplifying features from some recursive properties of
spherical Bessel functions. The procedure is straightforward and avoids a great deal
of the successive differentiations previously involved in generating these matrix
elements. The method is applicable to general polyatomic systems.

APPENDIX: THe Basic INTEGRALS I;7, EQ. (18),
FOR 0 <KL <6,2<p<8

The basic integrals I, which define the matrix elements of the principal value of
the Green’s function through Eq. (17) are listed for the cases 0 <{ L < 6,2 < p < 8.
The I;? for 2 < L < 6,4 < p < 8 are related to the first seven I,;? below through
Eq. (21).
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12 = -7 o-ad® Re [eiqR erf (i + i(@p q)]
0 2R 2a1? ’

1/2
It = 22 + "4 a-3/2¢~R3{da

1/2 R2q—7/2 3
6 274 _ 7 —k3/4 -
bt = gl — T e e [ ]

Ios —_ qzlos _ 1.1; e—R/ia [__~ _‘i_{_g_ a-11/2 + 2 Reqg—0/2 — l4§ a—7/2]’

1= R = ) ot ()] -

1/2
IF = g?I3 + 7"8 e~RY4aRa-5/2,

1/2 5 R?
7 _ 2[5 77' —R%4a (2 p,~1/2 —9/2
L’ = q¢5 + T c'(2Ra ek ),

Bt =210~ I,
B = S I8 — I,

Y A

It = I8 + o3 B — 2 I

I = I o B — 2 I,

YRR N -

== rr 4+ ey ae— 2

RS ) AERac) AN %Io -3,

o — gy 120 N0, 189, e

ACKNOWLEDGMENT

We would like to thank Professor Ostlund for communicating his results for the matrix elements
of G,* for p-type Gaussian functions to us prior to publication.



MATRIX ELEMENTS OF GREEN’S FUNCTION 425

REFERENCES

. T. N. RescigNo, C. W. McCurpY, Jr., AND V. McKoy, Phys. Rev. A 11 (1975), 825.
. N. S. OsTLUND, Chem. Phys. Lett. 34 (1975), 419.
. W. Gavurschy, SIAM J. Numer. Anal. 7 (1970), 187.

W N -

RECEIVED: May 6, 1977; REVISED: September 21, 1977

DEeBORAH A. LEVIN
ARNE W, FLIFLET
MICHAEL MAt
VINCENT McKoy?#

Arthur Amos Noyes Laboratory of Chemical Physics,$
California Institute of Technology, Pasadena,
California 91125

t Participant in the NSF Undergraduate Research Program, Summer 1976.
* To whom requests for reprints should be sent.
§ Contribution No. 5575.



